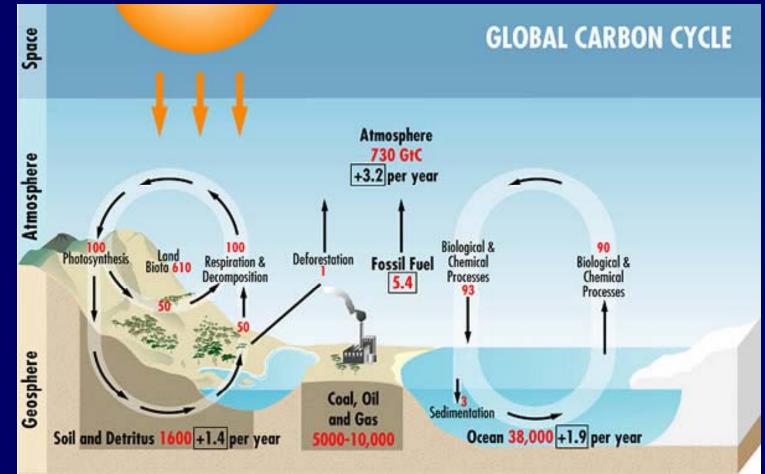

Life Cycle Assessment of Forest Based Biofuels

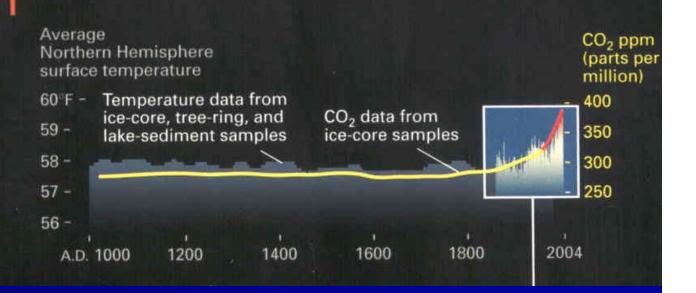
David R. Shonnard; Ph.D. Robbins Chair Professor in Sustainability Department of Chemical Engineering Director: Sustainable Futures Institute

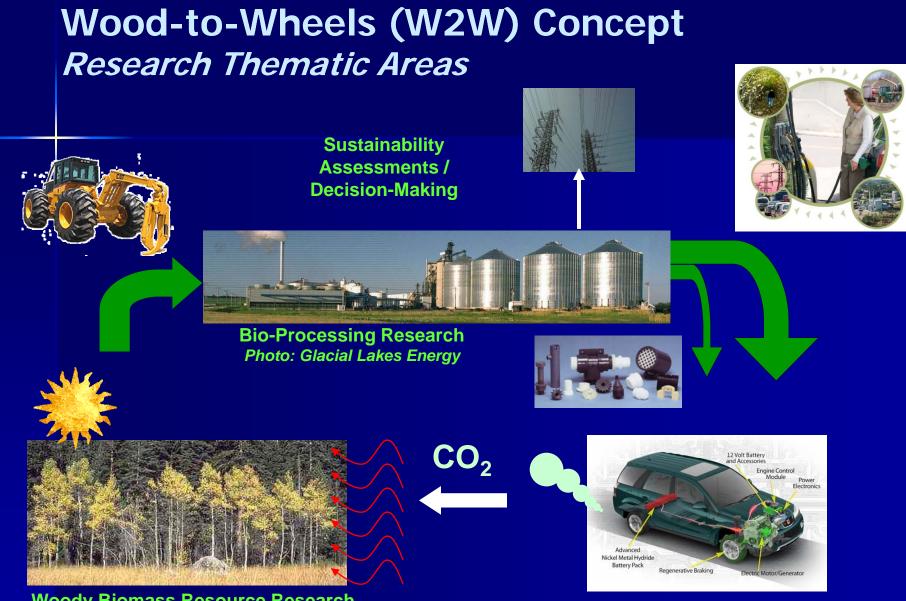
Forest Biofuels Statewide Collaboration Center Presentation Wednesday, July 27, 2011



Managing the Carbon Cycle: A Sustainable Energy Challenge

From http://www.bom.gov.au/info/climate/change/gallery/index.shtml


Combustion of Fossil Fuels acts as a Carbon Pump


CO₂ and Temperature in the Northern Hemisphere are Rising

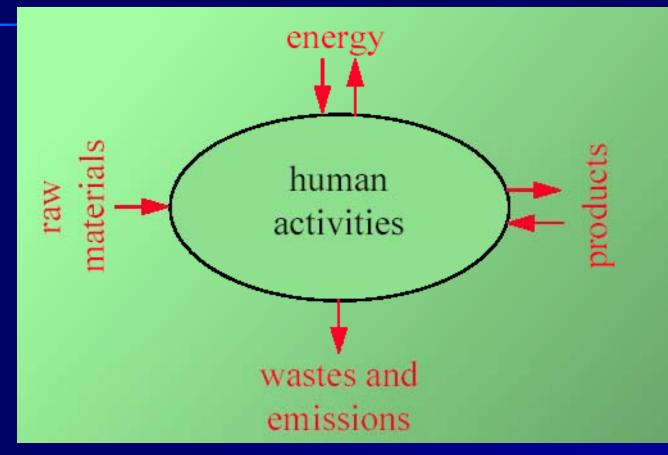
Temperature rising

Warming trends The concentration of carbon dioxide in the atmosphere helps determine Earth's surface temperature. Both CO₂ and temperature have risen sharply since 1950.

National Geographic, September 2004, pg 20, National Geographic Society, Washington, D.C.

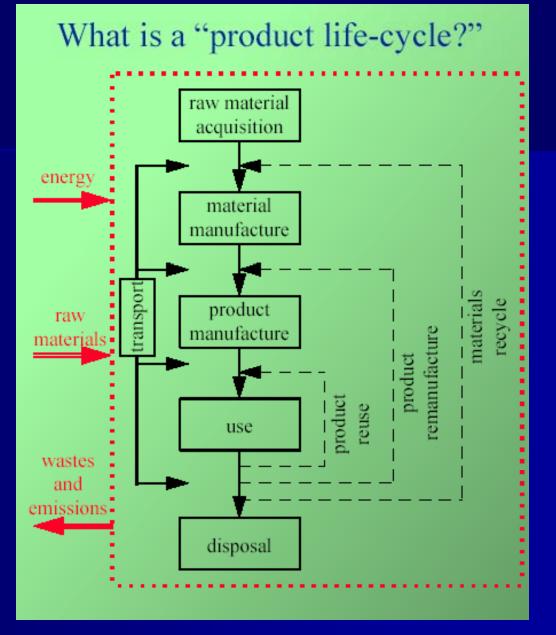
Woody Biomass Resource Research

Vehicle Systems Research


Presentation Outline

- An Overview of Life Cycle Assessment
- Goal and Scope Definition
- Life Cycle Inventory (LCI)
- Life Cycle Impact Assessment (LCIA)
- Comparison of Forest Feedstocks and Power Generated from Wood Versus Fossil Fuels

Uses of Life Cycle Assessment


- Decision-making in industry and government
 - Strategic planning, investments, product/process design
- Marketing
 - Environmental claim, ecolabeling
- Communication with stakeholders
 - Shareholders, regulatory agencies, policy makers
- Research and Development
 - Early evaluations of projects, periodic re-evaluations

Overview of Life Cycle Assessment

D.T. Allen, University of Texas – Austin "Life Cycle Assessment: Lesson 1"

Life Cycle Stages of a Product

D.T. Allen, University of Texas – Austin "Life Cycle Assessment: Lesson 1"

International Standards for Life Cycle Assessment

- International Organization for Standardization
 - ISO 14040: Environmental management Life cycle assessment Principles and framework
 - ISO 14041: Goal and scope definition and inventory analysis
 - ISO 14042: Life cycle impact assessment
 - ISO 14043: Life cycle interpretation

ISO 14040 Principles and framework

ISO 14040

Key features of the LCA methodology

- Scope must be from cradle to grave for products
- LCA studies should be transparent
- Specific requirements for comparative assertions
- Definition of a *functional unit*
- Goal and scope of the study
 - Goal: intended application, audience, reasons for the study
 - *Scope: product system, types of impacts, data quality*

Functional Unit

Functional Unit examples

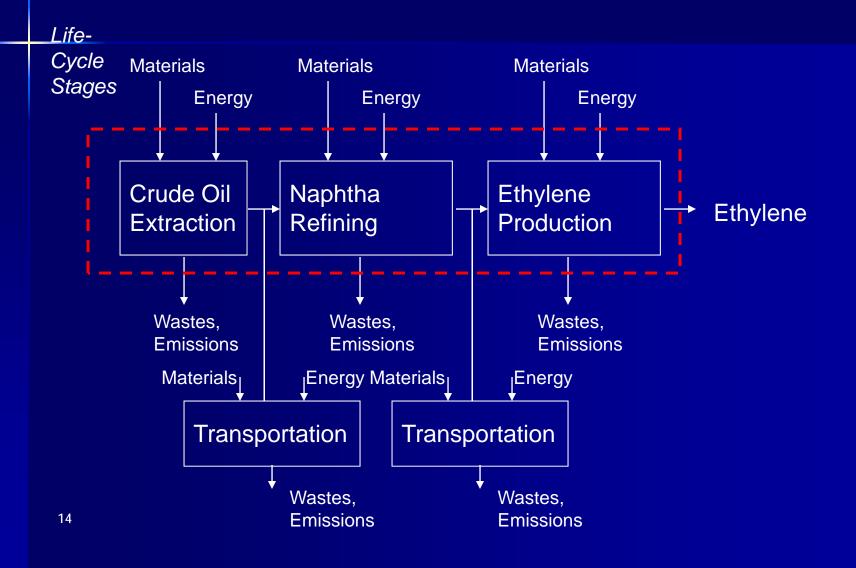
Incandescent versus fluorescent lamps

- What is the function? lighting of a space over time
- How many lamps and of what wattage are equivalent?

Fossil versus Forest-Based Transportation Fuels

- What is the function? transport of a vehicle over a distance
- 1 MJ of forest based biofuels is equivalant to 1 JM of petroleum fuel

Summary of LCA Introduction


- Motivation for LCA: Reduce environmental impacts of products over their life cycle.
- LCA is used for decision-making, communication, marketing, and strategic planning
- ISO 14040-14043 cover all elements of LCA, from planning/execution to methodologies.
- Setting of goals and scope in LCA studies are among the most important elements of an LCA

Life Cycle Inventory (LCI)

- Categories of inventory data
- Allocation method
- Data quality requirements

Inventory for ethylene production

Categories of Inventory Data

- Energy resources (process heating and electricity)
 - *Oil, natural gas, coal, nuclear, hydro, wind, solar, biomass*
- Other raw materials
 - Fe, NaCl, water, air, CaCO₃, Ni, Zn, etc.
- Emissions
 - ▹ to air, water, land
- Other categories
 - Land area use (often used in Europe and Japan)

Inventory Categories (Ethylene Example)

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

Table 13.2-1 Life-Cycle Inventory Data for the Production of 1 kg of Ethylene (Boustead, 1993).				
Category	Input or Output	Unit Average		
Energy content	Coal	0.94		
fuels, MJ	Oil	1.8		
	Gas	6.1		
	Hydroelectric	0.12		
	Nuclear	0.32		
	Other	<0.01		
	Total	9.2		
Feedstock, MJ	Coal	<0.01		
	Oil	31		
	Gas	29		
	Total	60		
Total Fuel + Feedstock	•	69		

Boustead, I., Eco-profiles of the European Plastics Industry, Report 1-4, European Center for Plastics in the Environment, Brussels, May 1993.

Inventory Categories (Ethylene Example), cont.

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

Raw Materials, mg	Iron ore	200
······································	Limestone	100
	Water	1,900,000
	Bauxite	300
4. •	Sodium chloride	5,400
	Clay	20
	Ferromanganese	<1
Air emissions, mg	Dust	1,000
	Carbon monoxide	600
	Carbon dioxide	530,000
	Sulfur oxides	4,000
· · · · · · · · · · · · · · · · · · ·	Nitrogen oxides	6,000
	Hydrogen sulfide	10
	Hydrogen chloride	20
	Hydrocarbons	7,000
	Other organics	1
	Metals	1

17

Inventory Categories (Ethylene Example), cont.

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

Water emissions, mg	Chemical oxygen demand	200
	Biological oxygen demand	40
	Acid, as H+	60
	Metals	300
	Chloride ions	50
	Dissolved organics	20
	Suspended solids	200
	Oil	200
	Phenol	1
· · · · · · · · · · · · · · · · · · ·	Dissolved solids	500
	Other nitrogen	10
Solid waste, mg	Industrial waste	1,400
	Mineral waste	8,000
	Slags and ash	3,000
	Nontoxic chemicals	400
	Toxic chemicals	1

Data quality requirements

- Time-related coverage of data:
 - How current is data? Averaged over what period?
- Geographic coverage of data collection:
 - Local, regional, national, continental, global?
- Technology coverage of data:
 - Average of process mix?, best available technology?

Summary of life cycle inventory

- Possibly the most challenging part of LCA.
- ISO 14041 provides guidelines
- Categories: energy, raw materials, ...
- Commercial software tools are available, but the most accurate inventories may be generated internally for manufacturers.
- Time-related, geographic, and technology coverage of inventory data – reduce uncertainty

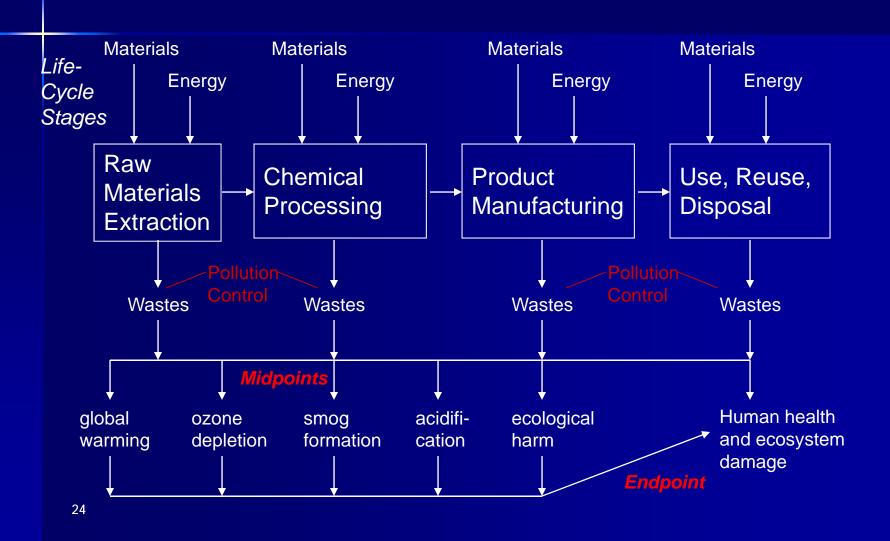
Life Cycle Impact Assessment (LCIA)

■ ISO 14042

- Mandatory requirements for LCIA
 - Identify impact categories,
 - classify inventory elements into impact categories,
 - characterize impacts for each inventory element
- Optional features of LCIA
 - normalization
 - valuation

Identification of Impact Categories

Global warming Stratospheric ozone depletion Smog formation (O₃) Acidification Human health impacts Ecosytem health Eutrophication Biodiversity Resource depletion


Classify Inventory Elements into Categories

Inventory Elements

Impact Categories

*CO*₂ Emissions ------ Global Warming *NO*₃⁻ in Wastewater ------ Human Health, Eutrophication Toluene Emissions ------ Human Health, Smog *CFCs Emissions ------ Global Warming, Ozone Depletion Coal Use ----- Fossil Energy, Resource Depletion Water Use ----- Resource Depletion, Land Use*

Characterize Environmental Impacts

Ozone	Table D-2 Ozone-De	pletion Potentials for	or Several In	dustrially Important Compo	unds.	
	Chemical	Formula	τ (yrs)	k (cm ³ molecule ⁻¹ s ⁻¹)	x	ODP
Depletion	Methyl bromide	CH₃Br		/////////////////////////////////////		0.6
Dotontial	Tetrachloromethane	CCl ₄	47.0	3.1×10^{-10}	4	1.08
Potential	1,1,1-trichloroethane	CH ₃ CCl ₃	6.1	3.2×10^{-10}	3	.12
	CFC (hard)					1.0
	CFC (soft)					.055
	CFC-11	CCl ₃ F	60.0	2.3×10^{-10}	3	1.0
	CFC-12	CCl_2F_2	120.0	1.5×10^{-10}	2	1.0
	CFC-13	CCIF ₃				1.0
	CFC-113	CCl ₂ FCClF ₂	90.0	2.0×10^{-10}	3	1.07
	CFC-114	CCIF ₂ CCIF ₂	200.0	1.6×10^{-10}	2	0.8
	CFC-115	CF ₃ CClF ₂	400.0			0.5
	HALON-1201	CHBrF ₂			,	1.4
	HALON-1202	CBr_2F_2	•			1.25
	HALON-1211	CBrClF ₂				4.0
	HALON-1301	CBrF ₃				16.0
	HALON-2311	CHClBrCF ₃			••	0.14
	HALON-2401	CHBrFCF ₃				0.25
	HALON-2402	CBrF ₂ CBrF ₂				7.0
	HCFC-22	CF ₂ HCl	15.0	1.0×10^{-10}	1	.055
	HCFC-123	C ₂ F ₃ HCl ₂	1.7	2.5×10^{-10}	2	.02
	HCFC-124	C ₂ F ₄ HCl	6.9	1.0×10^{-10}	1	.022
	HCFC-141b	$C_2FH_3Cl_2$	10.8	1.5×10^{-10}	2	.11
	HCFC-142b	$C_2F_2H_3Cl$	19.1	1.4×10^{-10}	1	.065
	HCFC-225ca	C ₃ HF ₅ Cl ₂				.025
	HCFC-225cb	C ₃ HF ₅ Cl ₂	•••			.033

 τ is the tropospheric reaction lifetime (hydroxyl radical reaction dependent) (WMO, 1990a-1992b). k is the reaction rate constant with atomic oxygen at 298 K (release of chlorine in the stratosphere). X is the number of chlorine atoms in the molecule.

Appendix D in:

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

Global Warming Potential

Table D-1 Globai Warm	ing Potentials for Gre	enhouse Gases	$S(CO_2$ is the benchmark).	. *
Chemical	Formula	τ (yrs)	BI (atm ⁻¹ cm ⁻²)	GWP ^a
Carbon dioxide	CO ₂	120.0		1
Methane	CH_4			21
NOx	· · ·		· · · ·	40
Nitrous oxide	N ₂ O			310
Dichloromethane	CH_2Cl_2	0.5	1604 ,	9
Trichloromethane	CHCl ₃	,		25
Tetrachloromethane	CCl ₄	47.0	1195	1300
1,1,1-trichloroethane	CH ₃ CCl ₃	6.1	1209	100
CFC (hard)	·.			7100
CFC (soft)				1600
CFC-11	CCl ₃ F	60.0	2389	3400
CFC-12	CCl_2F_2	120.0	3240	7100
CFC-13	CClF ₃			13000
070 440		~ ~ ~		

BI = infrared radiation absorbance band intensity

Appendix D in:

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

26

Acid Rain Potential

		η _i ,			
Compound	Reaction	α	MW _i (mol/kg)	(mol H ⁺ / kg "i")	ARP
SO ₂	$SO_2 + H_2O + O_3 \rightarrow 2H^+ + SO_4^{2-} + O_2$	2	.064	31.25	1.00
NO	$NO + O_3 + 1/2 H_2O \rightarrow H^+ + NO_3^- + 3/4 O_2$	1	.030	33.33	1.07
NO_2	$NO_2 + 1/2 H_2O + 1/4 O_2 \rightarrow H^+ + NO_3^-$	1	.046	21.74	0.70
NH ₃	$NH_3 + 2 O_2 \rightarrow H^+ + NO_3^- + H_2O$	1	.017	58.82	1.88
HC	$HCI \rightarrow H^+ + CI^-$	1	.0365	27,40	0.88
HF	$HF \rightarrow H^+ + F^-$	1	.020	50.00	1.60

Adapted from Heijungs et al., 1992

Appendix D in:

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

Smog Formation Potential

Table D-4	4 Maximum Incremental Reactivities (MIR) for Smog Formation (O ₃).			•
Alkanes	normal	MIR	branched	MIR
	methane	0.015	isobutane	1.21
	ethane	0.25	neopentane	0.37
	propane	0.48	iso-pentane	1.38
	n-butane	1.02	2,2-dimethylbutane	0.82
	n-pentane	1.04	2,3-dimethylbutane	1.07
· · · ·	n-hexane	0.98	2-methylpentane	1.50
	n-heptane	0.81	3-methylpentane	1.50
	n-octane	0.60	2,2,3-trimethylbutane	1.32
	n-nonane	0.54	2,3-dimethylpentane	1.31
	n-decane	0.46	2,4-dimethylpentane	1.50
	n-undecane	0.42	3,3-dimethylpentane	0.71
· ·	n-dodecane	0.38	2-methylhexane	1.08
	n-tridcane	0.35	3-methylhexane	1.40
	n-tetradecane	0.32	2,2,4-trimethylpentane	0.93
	Average	0.55	2,3,4-trimethylpentane	1.60

Appendix D in:

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

28

Health Impact Indicators

- Lethal dose or concentrations Acute exposure
- Reference concentrations Chronic exposure
- Regulatory limits Health-based standards
- R-Phrases European health categories

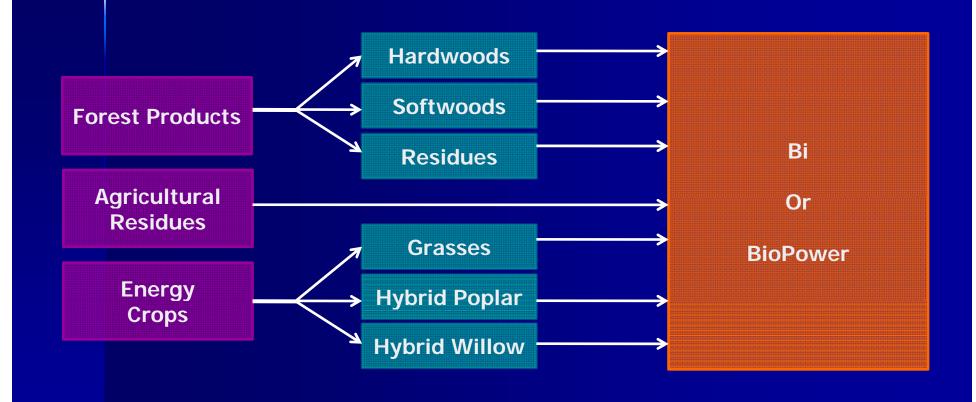
Valuation Approaches

 Table 13.3-5
 Strategies for Valuing Life-cycle Impacts (Christiansen, 1997).

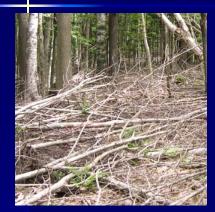
Life-cycle impact assessment approach	Description
Critical volumes	Emissions are weighted based on legal limits and are ag- gregated within each environmental medium (air, water, soil).
Environmental Priority System (Steen and Ryding, 1992)	Characterization and valuation steps combined using a single weighting factor for each inventory element (see example below). Valuation based on willingness-to-pay surveys.
Ecological scarcities	Characterization and valuation steps combined using a single weighting factor for each inventory element. Val- uation based on flows of emissions and resources rela- tive to the ability of the environment to assimilate the flows or the extent of resources available.
Distance to target method	Valuation based on target values for emission flows set in the Dutch national environmental plan.

Allen and Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, 2002

30


Summary of Life Cycle Impact Assessment

- ISO 14042 provides guidelines
- *Identify* categories of environmental impacts, *classify* pollutants into categories, *characterize* potency of pollutants for impact categories.
- Relative risk calculation using emission estimation, environmental fate modeling, and impact potency.
- Commercial software tools are available (the same tools as shown in the inventory section).


Summary of Life Cycle Assessment

- Motivation for LCA: Reduce environmental impacts of products over their life cycle.
- LCA is used for decision-making, communication, marketing, and strategic planning
- ISO 14040-14043 cover all elements of LCA, from planning/execution to methodologies.
- Software tools are available to aid in LCA studies Demo version of SimaPro 7.2 is useful introduction.

Potential Cellulosic Feedstocks in the Upper Midwest

Forest Feedstocks of Interest in MI

Harvest residues: 4-10 dry t·ac⁻¹ from a single harvest, perhaps 0.5 dry t·ac⁻¹·yr⁻¹, with no inputs

> Mill Residues: production depends on mill capacity and production efficiency

Other removals: 5-25 dry $t \cdot ac^{-1}$ from a thinning treatment, with no inputs

Roundwood to Chips: more than 4 dry t·ac⁻¹·yr⁻¹ in Aspen, perpetually and with no inputs

Dr. Robert Froese, School of Forest Resources and Environmental Sciences, Michigan Tech

Plantation Feedstocks of Interest in MI

Hybrid Poplar: 4-10 dry t·ac⁻¹·yr⁻¹ on a 10-year rotation starting from bare land

Low-Intensity, High-Diversity perennials: 2-4 dry t·ac⁻¹·yr⁻¹ perpetually with low inputs

Hybrid Willow: 3-14 dry t·ac⁻¹·yr⁻¹ on a 3-year cycle for a 21 year rotation starting from bare land

> Switchgrass monoculture: 4-10 dry t·ac⁻¹·yr⁻¹ in a single fall harvest, perpetually and starting from bare land

Dr. Robert Froese, School of Forest Resources and Environmental Sciences, Michigan Tech

Rapid Thermal Processing RTP[™] Technology

Pyrolysis Oil

Commercially Proven Patented Technology

ENV 5233-04

RTP[™] Product Yields

400 BDMTPD of Hardwood Whitewood

Feed, wt%	
Hardwood Whitewood	100
Typical Product Yields, wt% Dry Feed	
Pyrolysis Oil	70
By-Product Vapor	15
Char	15

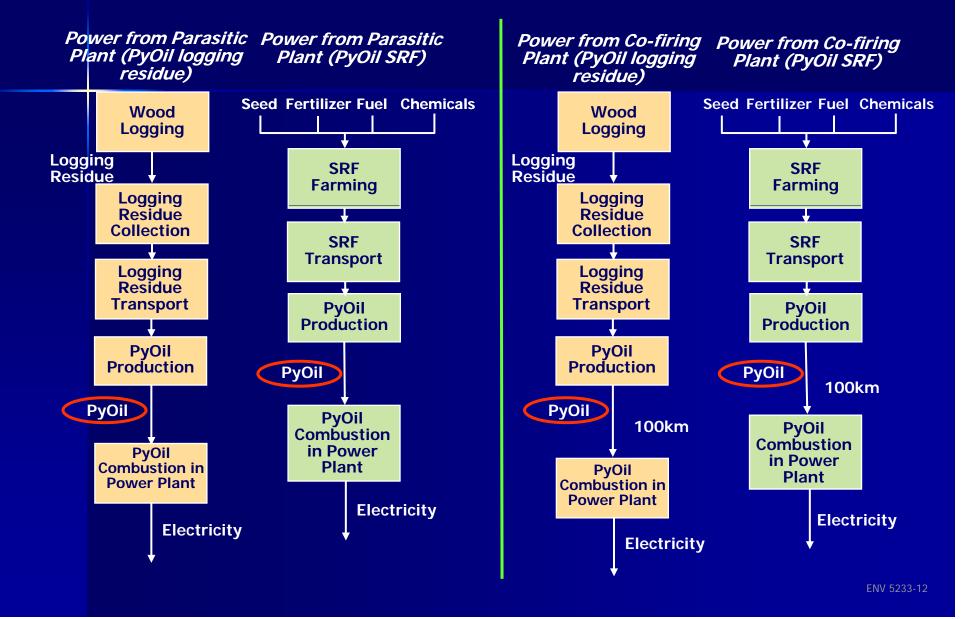
Yields For Various Feeds

Biomass Feedstock Type	Typical Pyrolysis Oil Yield, wt% of Dry Feedstock	
Hardwood	70 – 75	
Softwood	70 – 80	
Hardwood Bark	60 – 65	
Softwood Bark	55 – 65	
Corn Fiber	65 – 75	
Bagasse	70 – 75	
Waste Paper	60 - 80	

Cellulosic Feedstock Flexible With High Yields of Pyrolysis Oil

RTP Pyrolysis Oil Properties

- Pourable and transportable liquid fuel
- High oxygenate content
- Contains 55-60% the energy content of crude-based fuel oils
- As produced, can be corrosive

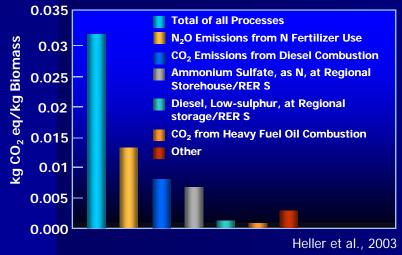

Comparison of Heating Value of Pyrolysis Oil and Typical Fuels

Fuel	MJ / Litre	BTU / US Gallon
Methanol	17.5	62,500
Pyrolysis Oil (Wood)	21.0	75,500
Pyrolysis Oil (Bark)	22.7	81,500
Ethanol	23.5	84,000
Light Fuel Oil / Diesel	38.9	138,500

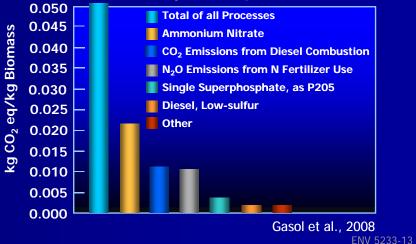
Suitable for Energy Applications

Life Cycle Pathway Diagrams

Feedstock Cultivation and Harvesting GHG Emissions


	Residue	SRF Crops	
	Logging	Willow	Poplar
Biomass Yield			
odt/ha/yr	0.62	11.95	13.50
GHG			
kg CO ₂ -eq/kg Biomass	0.027	0.032	0.053

GHG Contribution by Process Logging Residue



Reis and Shonnard, 2007

GHG Contribution by Process Willow

GHG Contribution by Process Hybrid/Poplar

Pyrolysis Oil Production *GHG Emissions*

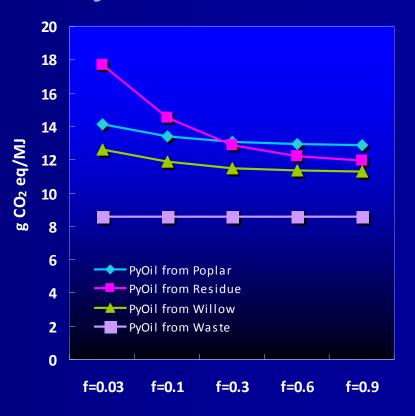
gCO ₂ eq /MJ	PyOil Logging Residue	PyOil Willow	PyOil Poplar	PyOil Waste
Biomass Cultivation and Harvesting	2.08	2.41	4.0	0
Biomass Transportation	3.84	0.87	0.82	0
Pyrolysis	8.59	8.59	8.59	8.59
Total	14.51	11.88	13.42	8.59

$$\mathbf{r}_{\text{circle}} = \frac{2}{3} * \tau * \sqrt{\frac{F}{\pi * Y * f}} \quad (\text{Wright et. al. 2008})$$

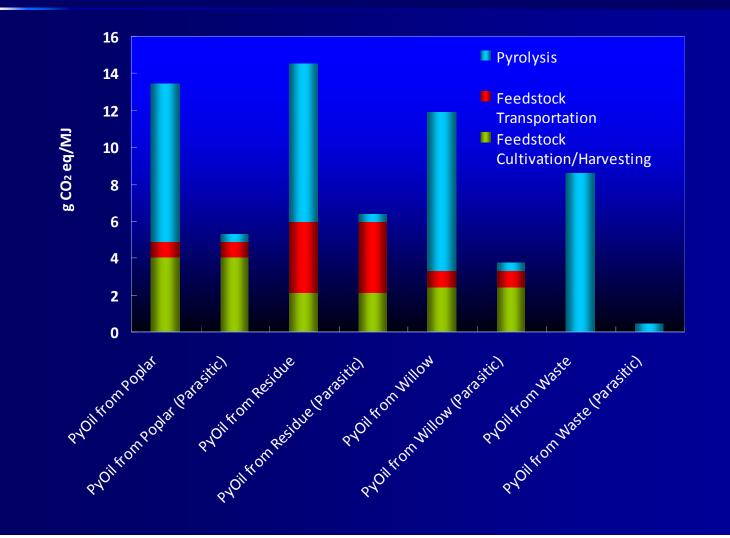
 τ : the tortuosity factor of the road (1.5)

f: fraction of land devoted to biomass crops (0.1)

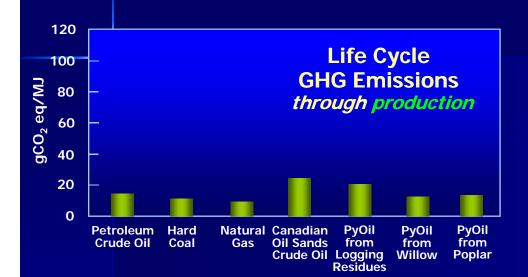
F: feedstock biomass required (400*365 metric tons / acre / yr)


Y: yield of biomass (metric tons / acre / yr)

Sensitivity Analysis of Transportation: *f Value (Fraction of Land in Cultivation)*


Transportation Distance vs. f

	f=0.03	f=0.1	f=0.3	f=0.6	f=0.9
r _{circle} (miles) Poplar	20.05	10.98	6.34	4.48	3.66
r _{circle} (miles) Willow	21.34	11.69	6.75	4.77	3.90
r _{circle} (miles) Residue	93.74	51.34	29.64	20.96	17.11


PyOil GHG Emissions vs f

Sensitivity Analyses of Power Source Imported Power (US Grid Mix) vs. Parasitic System

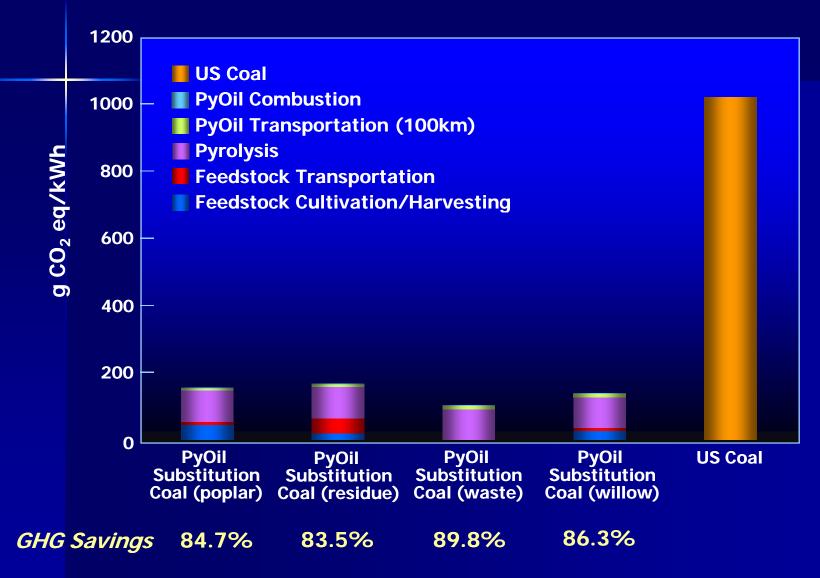


Pyrolysis Oil (non-parasitic) vs. Fossil Fuel Comparison of GHG Emissions

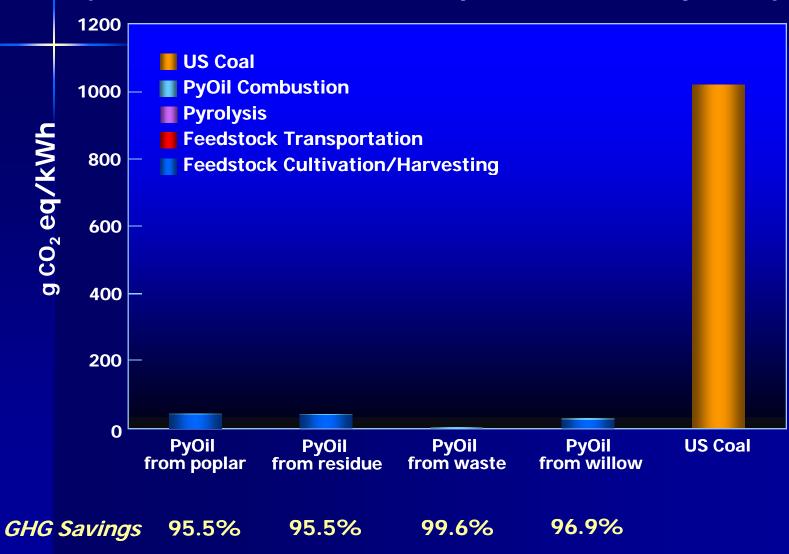
Pyrolysis Oil Production foot print similar to other energy alternatives Assumed biomass transport distances

- 200 km for logging residues
- 25 km for short rotation forest crops

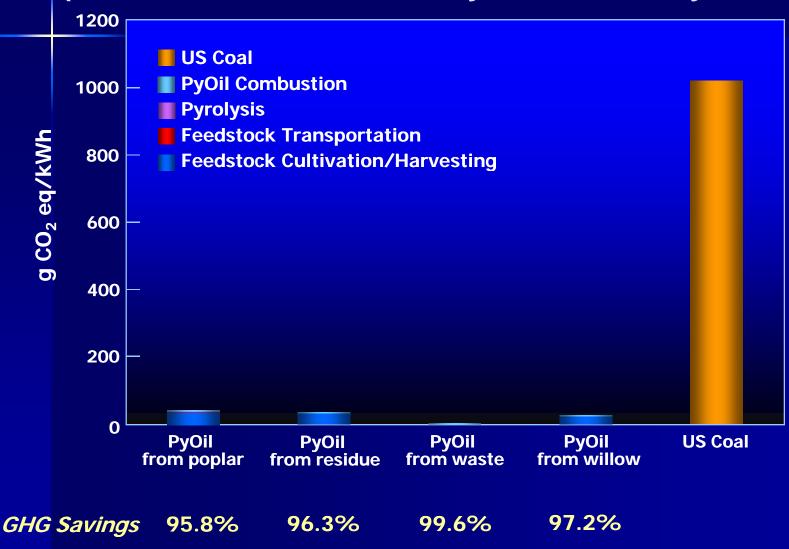
Pyrolysis Oil *Life Cycle* foot print *Greener* than other alternatives

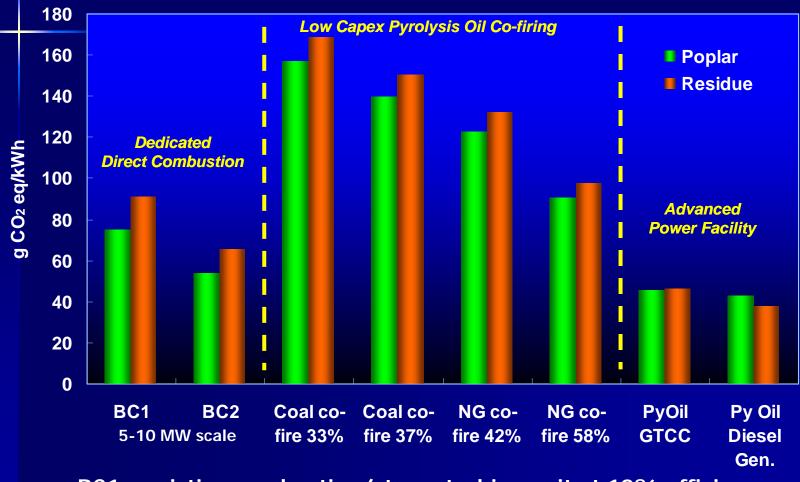

- 70-88% lower GHG emissions
- SO_x emissions similar to Natural Gas

LCA Results for Pyrolysis Oil to Power 400 BDMTPD


Multiple Scenarios Evaluated

Co-firing Cases (lowest capital)
 Fuel Oil Power Plant
 Coal Power Plant
 Natural Gas Power Plant
 Advanced Power Facilities (highest efficiency)
 Gas Turbine Combined Cycle (GTCC) with heat recovery
 Distributed Diesel Generator located at site
 Comparison to Direct Biomass Combustion (BC)
 Dedicated facility at 18% efficiency (existing BC1)
 Dedicated facility at 25% efficiency (modern BC2)


Pyrolysis Oil Co-fired in Coal Power Plant (400 tonnes/day biomass feed, 33% efficiency)


Advanced Power Generation Scheme -1 Pyrolysis Oil Combusted in GTCC w/HR (9.62MW, 42.9% efficiency, net efficiency 39%)

Advanced Power Generation Scheme - 2 Pyrolysis Oil Combusted in Diesel Generator (5MW at site, 45% efficiency, net efficiency 40.9%)

Comparisons of LC-GHG Emissions with Direct Biomass Combustion (BC)

BC1= existing combustion/steam turbine unit at 18% efficiency BC2= modern combustion/steam turbine at 25% efficiency

Summary and Conclusions

- There is a variety of forest resources that can be converted to pyrolysis bio-oil using RTPTM process technology
- Pyrolysis bio-oil can be utilized by a wider spectrum of power generation technologies compared to biomass combustion
 - Biomass combustion: limited to co-firing with coal
 - Pyrolysis bio-oil: compatible with NG, coal, and oil systems
- Greenhouse gas emissions of pyrolysis bio-oil electricity
 - > GHG impacts of RTPTM pyrolysis oil production ~ fossil fuels
 - \succ "Parasitic" pyrolysis oil production reduces GHG by $\sim \frac{1}{2}$
 - Savings of GHG emissions of between 76 99% is achieved for pyrolysis oil electricity compared to US Grid electricity
 - High efficiency applications for pyrolysis oil electricity are more favorable compared to direct biomass combustion electricity

Acknowledgement:

"This material is based upon work supported by the Department of Energy under award number DE-EE-0000280."

Disclaimer:

"This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, or service by trade name, trademark, manufactured, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Questions?

